On the modeling and simulation of of reaction-transfer dynamics in semiconductor-electrolyte solar cells
نویسندگان
چکیده
The mathematical modeling and numerical simulation of semiconductor-electrolyte systems play important roles in the design of high-performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a system of nonlinear partial differential equations, for the complete description of charges transfer dynamics in such systems. The model consists of a reaction-drift-diffusionPoisson system that models the transport of electron-hole pairs in the semiconductor region and an equivalent system that describes the transport of reductant-oxidant pairs in the electrolyte region. The coupling between the semiconductor and the electrolyte is modeled through a set of interfacial reactive and current balance conditions. We present some numerical simulations to illustrate the quantitative behavior of the semiconductor-electrolyte system in both dark and illuminated environments. We show numerically that one can replace the electrolyte region in the system with a Schottky contact only when the bulk reductant-oxidant pair density is extremely high. Otherwise, such replacement gives significantly inaccurate description of the real dynamics of the semiconductor-electrolyte system.
منابع مشابه
On the Modeling and Simulation of Reaction-Transfer Dynamics in Semiconductor-Electrolyte Solar Cells
The mathematical modeling and numerical simulation of semiconductor-electrolyte systems play important roles in the design of high-performance semiconductor-liquid junction solar cells. In this work, we propose a macroscopic mathematical model, a system of nonlinear partial differential equations, for the complete description of charge transfer dynamics in such systems. The model consists of a ...
متن کاملInfluence of TiO2 layer thickness as photoanode in Dye Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) are categorized as some of inexpensive thin-film solar cells. The basis and foundation of these cells is a semiconductor that consists of an electrolyte and a light-sensitive anode. Titanium dioxide (TiO2) is a semiconductor that plays the role of anode and is the main constituent of these cells. In this paper, we have addressed the functionality and performan...
متن کاملThe Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency
Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...
متن کاملSimple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs
This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...
متن کاملFabrication of Inorganic Sensitized Solar Cells by Drop Casting Deposition of PbSe and PbTe on the TiO2 Surface
In this work, PbSe and PbTe sensitized TiO2 solar cells were fabricated. PbSe and PbTe nanostructure was deposited on the TiO2 surface via a drop cast method. The fabricated surfaces were examined by atomic force microscopy (AFM). Also the optical properties of the layers were studied by diffuse reflectance spectroscopy (DRS) spectra. The morphology of the surfaces was obtained by scanning elec...
متن کامل